An Invariant for Hypersurfaces in Prime Characteristic

نویسنده

  • David G. Glynn
چکیده

A hypersurface of order (n+ 1)(ph − 1) in projective space of dimension n of prime characteristic p has an invariant monomial. This implies that a hypersurface of order (n+1)(ph−1)−1 determines an invariant point. A hypersurface of order d < n+ 1 in a projective space of dimension n of characteristic two has an invariant set of subspaces of dimension d− 1 determined by one linear condition on the Grassmann coordinates of the dual subspaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Lightlike Geometry of Para-Sasakian Manifolds

We study lightlike hypersurfaces of para-Sasakian manifolds tangent to the characteristic vector field. In particular, we define invariant lightlike hypersurfaces and screen semi-invariant lightlike hypersurfaces, respectively, and give examples. Integrability conditions for the distributions on a screen semi-invariant lightlike hypersurface of para-Sasakian manifolds are investigated. We obtai...

متن کامل

Invariant Hypersurfaces for Positive Characteristic Vector Fields

We show that a generic vector field on an affine space of positive characteristic admits an invariant algebraic hypersurface. This is in sharp contrast with the characteristic zero case where Jouanolou’s Theorem says that a generic vector field on the complex plane does not admit any invariant algebraic curve.

متن کامل

Invariant hypersurfaces for derivations in positive characteristic

Let A be an integral k-algebra of finite type over an algebraically closed field k of characteristic p > 0. Given a collection D of k-derivations on A, that we interpret as algebraic vector fields on X = Spec(A), we study the group spanned by the hypersurfaces V (f) of X invariant under D modulo the rational first integrals of D. We prove that this group is always a finite dimensional Fp-vector...

متن کامل

On generalized reduced representations of restricted Lie superalgebras in prime characteristic

Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...

متن کامل

An invariant for matrices and sets of points in prime characteristic

There is polynomial function Xq in the entries of an m×m(q− 1) matrix over a field of prime characteristic p, where q = p is a power of p, that has very similar properties to the determinant of a square matrix. It is invariant under multiplication on the left by a non-singular matrix, and under permutations of the columns. This gives a way to extend the invariant theory of sets of points in pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2012